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Abstract

This supplementary material covers the additional re-
sults and visualizations that were excluded from the main
paper due to a lack of space. Specifically, the following
contents are included: i) The complete table of our experi-
ment results in the main paper, the impact of hyperparam-
eter changes in our proposed method, and the validation of
proposed uncertainty criteria (Sec. A). ii) The experimen-
tal results of video-specific ATL on JRDB-Pose (Sec. B), iii)
A statement about the limitations of the proposed method
(Sec. C), and iv) Additional qualitative examples of sample
selection by proposed THC, WPU, and DUW (Sec. D).

A. Additional Results on PoseTrack21

In this section, we provide a complete table showing
the experimental results for the video-specific Active Trans-
fer Learning (ATL) on the PoseTrack21 dataset [1], which
could not be included in the main paper. All the results are
obtained with the same experimental settings as described
in the main manuscript. Once again, the selection criteria
used in our experiment are as follows:

• Random: Random sampling from a uniform distribu-
tion.

• Least Confidence (LC): A traditional uncertainty
measurement described in [4].

• Multiple Peak Entropy (MPE): An uncertainty crite-
rion in [5].

• Temporal Pose Continuity (TPC): An uncertainty
criterion in [6].

• k-means: A representativeness criterion used in [13].
• Core-Set: An original Core-Set sampling from [10].
• Temporal Heatmap Continuity (THC): Our uncer-

tainty criterion based on the temporal change of esti-
mated heatmaps.

• Whole-body Pose Unnaturalness (WPU): Our un-

certainty criterion based on the unnaturalness of esti-
mated poses.

• Dynamic Uncertainty Weighting (DUW): Our crite-
rion combines uncertainty and Core-Set sampling [10].

A.1. Baseline and State-of-the-art Comparisons

Table 1 shows full results of the proposed video-specific
ATL on PoseTrack21 [1]. While the performances of all
uncertainty-based methods [4–6] are even less than the ran-
dom selection, our proposed method (THC+WPU+DUW)
stably outperforms other methods including k-means [13]
and Core-Set [10]. Our proposed method demonstrates high
performance consistently. However, during the initial cy-
cles of ATL, representativeness criteria such as k-means
clustering [13] and Core-Set sampling [10] show superior
performance. This observation aligns with our hypothesis
stated in the main paper: during the early stages of ATL, it
is important to cover the data distribution of the target do-
main. In contrast, as ATL progresses, identifying samples
with high uncertainty becomes increasingly important. In
this context, our DUW effectively enhances performance by
identifying these challenging samples. This shows the im-
portance of uncertainty for performance improvement dur-
ing the later stages of ATL.

A.2. Ablation Studies

Table 2 shows the full results of ablation studies.
Our proposed methods, THC, WPU, and DUW, all used
together, achieved the highest ALC. THC+DUW and
WPU+DUW surpassed the performance of the original
Core-Set [10] due to the incorporation of uncertainty in
sample selection. In cases where only THC, only WPU,
or THC+WPU, the performance is found to be inferior to
that of the Core-Set [10]. These lower performances are
attributed to a selection bias [3,9] common in sample selec-
tion by uncertainty.

In addition, as mentioned in Sec. 5.4 of the main paper,
we investigated the performance of ATL under various con-



Table 1. Quantitative results of our proposed video-specific ATL on PoseTrack21 [1]. Red and blue indicate the best and the second best,
respectively. AP@0.6 is the average AP of 170 test videos with a 0.6 OKS threshold. “5%” means the estimation result with 5% labeled
samples in the query video. ALC values are also calculated by an average of 170 test videos.

Criterion AP@0.6 (%) ALC
0% 5% 10% 15% 20% 30% 40% 60% 80% 100% (%)

Random 81.82 87.76 93.60 95.10 96.09 96.92 97.39 98.50 99.21 100.00 96.91
LC [4] 81.82 77.49 89.55 93.03 94.60 95.69 96.77 98.29 99.37 100.00 95.74
MPE [5] 81.82 78.96 90.96 93.98 95.09 96.44 97.23 98.38 99.28 100.00 96.11
TPC [6] 81.82 83.38 90.97 93.63 95.32 96.34 97.31 98.54 99.43 100.00 96.40
k-means [13] 81.82 93.97 95.19 95.82 96.37 97.55 98.11 98.82 99.45 100.00 97.65
Core-Set [10] 81.82 93.18 96.35 97.26 97.62 98.18 98.60 99.27 99.67 100.00 98.12
Ours
(THC+WPU+DUW) 81.82 93.35 96.14 97.37 97.90 98.44 98.77 99.33 99.67 100.00 98.21

Table 2. Ablation study results of video-specific ATL on PoseTrack21 [1]. Red and blue indicate the best and the second best, respectively.
AP@0.6 is the average AP of 170 test videos with a 0.6 OKS threshold. “5%” means the estimation result with 5% labeled samples. ALC
values are also calculated by an average of 170 test videos. (fixed), (increase), (const), and (decrease) denote the video-specific ATL with a
fixed balance of uncertainty and representativeness, linearly increasing/decreasing the weight of THC toward WPU, using the same weight
for THC and WPU, respectively.

Criterion AP@0.6 (%) ALC
0% 5% 10% 15% 20% 30% 40% 60% 80% 100% (%)

Core-Set [10] 81.82 93.18 96.35 97.26 97.62 98.18 98.60 99.27 99.67 100.00 98.12
THC 81.82 82.59 89.10 91.85 92.86 94.70 96.43 97.74 98.97 100.00 95.45
WPU 81.82 85.56 91.11 93.39 94.74 96.36 97.31 98.48 99.28 100.00 96.45
THC+WPU 81.82 84.82 91.72 93.83 95.17 96.38 97.25 98.54 99.35 100.00 96.51
THC+DUW 81.82 93.12 95.88 97.11 97.70 98.42 98.91 99.35 99.74 100.00 98.19
WPU+DUW 81.82 93.19 95.96 97.26 97.87 98.51 98.76 99.27 99.65 100.00 98.17
THC+WPU+DUW 81.82 93.02 95.71 97.15 97.68 98.41 98.81 99.28 99.66 100.00 98.14(fixed)
THC+WPU+DUW 81.82 93.18 95.85 97.13 97.86 98.47 98.80 99.27 99.64 100.00 98.16(increase)
THC+WPU+DUW 81.82 93.08 96.11 97.34 97.72 98.48 98.94 99.43 99.73 100.00 98.24(decrease)
THC+WPU+DUW 81.82 93.35 96.14 97.37 97.90 98.44 98.77 99.33 99.67 100.00 98.21(const)

figurations conceivable for the proposed method’s compo-
nents. As shown in Table 2, without dynamically combining
uncertainty and representativeness at each stage of active
learning (“fixed”), the performance was not as promising
compared to other configurations of our proposed method.

Furthermore, regarding the combination of THC and
WPU, generally, the use of THC and WPU with the same
weight (“const”) led to significant performance improve-
ments in the initial phase of active learning. On the other
hand, by gradually decreasing the weight of THC and in-
creasing the weight of WPU (“decrease”), performance ef-
ficiently improved from the mid-phase of ATL, resulting
in the highest value for ALC. This suggests that not only
high performance can be achieved by simply using THC
and WPU with the same weight (“const”), but also design-

ing an appropriate method for combining THC and WPU
can lead to a more effective video-specific ATL.

A.3. Impact of Hyperparameter Changes in DUW

In this section, we investigate the influence of the hy-
perparameter λ in the following objective function used in
DUW:

u = arg max
i∈U

{min
j∈L

{(1−Gc)×∆(xi, xj)}+Gc×λC(xi)}

(1)
where ∆(xi, xj) is the Euclidean distance between the

sample’s feature vectors xi and xj , Gc is the approximated
generalization performance of Human Pose (HP) estimator,
C(xi) is each sample’s uncertainty score, L represents la-
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Figure 1. The change in the average uncertainty accompanying
the AP@0.6 transition in video-specific ATL on PoseTrack21 [1],
which are shown in Tables 1 and 2. The uncertainty at the begin-
ning of ATL is used as a baseline (100%).

beled samples set, and U represents an unlabeled set, re-
spectively. As explained in the main manuscript, a larger
value of λ leads to a sample selection that emphasizes un-
certainty more. Conversely, a smaller value of λ results in a
sample selection more similar to the original Core-Set sam-
pling [10]. When λ equals zero, the sample selection is the
same as the original Core-Set sampling.

Table 3 shows the results of video-specific ATL when
the order of λ in Eq.(9) is changed. The active selection
criterion used for this experiment was THC+WPU+DUW,
and the detailed experimental setup remains the same as
Sec. A.1 and A.2. According to the results presented in
Table 3, the highest ALC is achieved when λ equals 0.01,
followed closely by λ values of 0.1 and 0.001. On the
other hand, performance is degraded when λ equals 0, cor-
responding to the original Core-Set [10] that tends to select
samples with low informativeness due to not considering
uncertainty. Similarly, performance decreases with λ values
of 1 and 10, which overly prioritize uncertainty and conse-
quently lose diversity in sample selection.

A.4. Validation of Uncertainty Criteria

We validate our proposed uncertainty criteria, THC and
WPU. Uncertainty is expected to be low when HP esti-
mation is correct and high when the result is incorrect.
Hence, as the accuracy of estimation improves, the uncer-
tainty should decrease. Fig. 1 shows the uncertainty change
accompanying the transition of HP estimation performance
in video-specific ATL. In MPE [5], the uncertainty remains
almost constant regardless of changes in performance. On
the other hand, THC and WPU show a desirable change in
uncertainty that decreases with the improvement of AP.
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Figure 2. Learning Curve of video-specific ATL on JRDB-
Pose [11].

B. Additional Results on JRDB-Pose

In this section, we report a complete table of experimen-
tal results on the JRDB-Pose dataset [11] in the main paper,
additional experimental results with another metric, and the
validation of uncertainty criteria on JRDB-Pose. The basic
experimental conditions are the same as those described in
Sec. 5.1 of the main paper.

B.1. Baseline and State-of-the-art Comparison

The results of the video-specific ATL for the 15 test
videos from JRDB-Pose are presented in Tables 4 and 5.
Fig. 2 is the plotted learning curve. Here too, while the
initial AP@0.6 is 56.11%, our proposed method (“Ours”)
achieved performance close to 90% with only 5% of the la-
beling. Furthermore, our ALC performance across the en-
tire ATL outperformed all comparison methods.

Moreover, when evaluated using OSPA, our method
displayed performance comparable to the best-performing
method (“k-means [13]”). This suggests that our method
can efficiently adapt the HP estimator even for challenging
datasets like JRDB-Pose [11].

B.2. Validation of Uncertainty Criteria

Figure 3 illustrates the change in uncertainty with the im-
provement of the FastPose’s [2] performance in the video-
specific ATL using the JRDB-Pose dataset [11]. As with
the results in PoseTrack21 [1] (Sec. A.4), as the perfor-
mance of FastPose improves, the value of uncertainty de-
creases. This suggests that our proposed uncertainty criteria
(THC+WPU) can reflect the error of the prediction results.



Table 3. Impact of variation in hyperparameter λ of DUW. Red and blue indicate the best and the second best, respectively. AP@0.6 is the
average AP of 170 test videos with a 0.6 OKS threshold. “5%” means the estimation result with 5% labeled samples. ALC values are also
calculated by an average of 170 test videos. When λ = 0, the sample selection is equivalent to the original Core-Set sampling [10].

Criterion AP@0.6 (%) ALC
0% 5% 10% 15% 20% 30% 40% 60% 80% 100% (%)

λ = 0
(Core-Set [10]) 81.82 93.18 96.35 97.26 97.62 98.18 98.60 99.27 99.67 100.00 98.12

λ = 0.001 81.82 93.30 96.33 97.34 97.78 98.50 98.82 99.28 99.62 100.00 98.20
λ = 0.01 81.82 93.35 96.14 97.37 97.90 98.44 98.77 99.33 99.67 100.00 98.21
λ = 0.1 81.82 93.37 96.35 97.29 97.82 98.36 98.80 99.26 99.70 100.00 98.20
λ = 1 81.82 93.31 95.77 97.05 97.55 98.10 98.43 99.12 99.60 100.00 98.01
λ = 10 81.82 93.34 95.64 96.64 97.12 97.99 98.36 99.07 99.58 100.00 97.91

Table 4. Quantitative results of our proposed video-specific ATL
on JRDB-Pose [11]. Red and blue indicate the best and the second
best, respectively. OSPA is an average of 15 test videos. “5%”
means the estimation result with 5% labeled samples in the query
video. ALC values are also an average of 15 test videos.

Criterion OSPA ↓ ALC ↓
5% 20% 40% ×10−4

Random 0.129 0.074 0.047 5.22
LC [4] 0.287 0.122 0.068 7.80
MPE [5] 0.196 0.071 0.040 5.43
TPC [6] 0.239 0.110 0.066 7.59
k-means [13] 0.132 0.067 0.040 4.72
Core-Set [10] 0.157 0.077 0.052 5.70
Ours
(THC+WPU+DUW) 0.134 0.068 0.047 5.05

C. Limitations
Despite the positive results observed in our study, it is

important to acknowledge some limitations.
First, the tuning of learning conditions can be challeng-

ing. In particular, the optimal hyperparameters of the pro-
posed methods could be dataset-specific and still require
some tuning to achieve acceptable results.

Second, our Temporal Heatmap Continuity (THC)
method has an inherent limitation. The THC might be high
wrongly, especially when the object’s movements are dras-
tic. This could lead to a skewed selection towards instances
with more intense movements.

Lastly, determining an upper bound for learning effi-
ciency in ATL is still challenging. Mainly due to the
too many cases of possible combinations of sample selec-
tions [12], it is difficult to define an optimal sampling strat-
egy during the ATL process even if ground truth labels are
available.

These limitations offer potential areas to further improve
the proposed method.
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Figure 3. The change in the average uncertainty accompanying
the AP@0.6 transition in video-specific ATL on JRDB-Pose [11],
which are shown in Table 5. The uncertainty at the beginning of
ATL is used as a baseline (100%).

D. Visualization of Proposed Active Selection
Criteria

In this section, we present qualitative results of sample
selection by THC (Fig. 4), WPU (Fig. 5), and DUW (Fig. 6)
on PoseTrack21 [1]. The experimental settings for each cri-
terion are the same as those in the main paper.

Figs. 4 and 5 demonstrate that our proposed THC and
WPU accurately capture incorrect pose estimation results.
Furthermore, Fig. 6 clearly shows that the balance be-
tween uncertainty and representativeness changes dynam-
ically with the parameter λ. This also suggests that when
λ = 0.01, we can achieve a selection of uncertain and di-
verse samples.



Table 5. Quantitative results of our proposed video-specific ATL on JRDB-Pose [11]. Red and blue indicate the best and the second best,
respectively. AP@0.6 is the average AP of 15 test videos with a 0.6 OKS threshold. “5%” means the estimation result with 5% labeled
samples in the query video. ALC values are also calculated by an average of 15 test videos.

Criterion AP@0.6 (%) ALC
0% 5% 10% 15% 20% 30% 40% 60% 80% 100% (%)

Random 56.11 88.16 91.44 92.91 94.19 95.33 96.46 97.86 98.74 100.00 95.42
LC [4] 56.11 65.04 79.89 86.20 89.34 92.88 94.84 98.14 99.32 100.00 92.67
MPE [5] 56.11 81.78 87.95 93.24 95.74 97.39 98.03 98.59 99.32 100.00 95.76
TPC [6] 56.11 74.83 84.16 88.52 92.25 94.12 95.74 97.50 98.94 100.00 93.76
k-means [13] 56.11 88.97 93.78 95.41 95.98 96.86 97.53 98.61 99.28 100.00 96.41
Core-Set [10] 56.11 85.09 91.87 94.24 95.27 96.18 96.80 98.01 98.75 100.00 95.60
Ours
(THC+WPU+DUW) 56.11 89.76 94.45 95.93 96.48 97.08 97.59 98.47 99.14 100.00 96.52
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(a) Heatmaps with low THC. Times are at t-1, t and t+1 from left to right in each scene.

(b) Heatmaps with high THC. Times are at t-1, t and t+1 from left to right in each scene.

Figure 4. Additional qualitative examples of our THC. The top row of the figure shows the original images, with the estimated keypoint
positions marked by green circles. The bottom row presents the heatmaps estimated for each of the three adjacent frames, where a color
closer to blue indicates a lower probability of keypoint presence, while a color closer to red suggests a higher probability. (a) There is a
strong peak at a single point in the heatmap between adjacent frames consistently. As a result, estimated keypoint positions are accurate.
(b) In contrast, the estimations are inconsistent and the peaks in the heatmap are dispersed. It results in an erroneous estimation.



(a) Estimated pose with low WPU.

(b) Estimated pose with high WPU.

Figure 5. Examples of samples selected by WPU. In the figure, the red lines represent the estimated pose and its Hybrid feature [7], and
the blue lines represent the Hybrid feature output by the AE trained on natural poses. In the case of (a), where the WPU is low, the red
Hybrid feature, which is the input to the AE, and the blue Hybrid feature, which is the output, are close to each other, and the estimated
pose is also close to the correct one. On the other hand, in (b), due to an incorrect pose estimation input, the Hybrid features are far apart
from each other, resulting in a high WPU value.

(a) λ=0 (Core-Set) (b) λ=0.01 (DUW) (c) λ=10 (DUW)

Figure 6. A visualization result of the sample selection of our DUW criterion. We have utilized DensMAP [8] to plot feature vectors
extracted by the HP estimator. In this plot, circles represent newly selected samples, while cross marks denote unlabeled samples that were
not selected for the current ATL cycle. The color of the plot corresponds to the normalized uncertainty. (a) represents the results when
λ = 0 (i.e., equivalent to the original Core-Set [10]), which tends to select diverse but uninformative samples with low uncertainty. (b)
represents the selection for λ = 0.01, which yielded the best results in Sec. A.3. It can be seen that uncertain and diverse samples are
selected. (c) represents the case when λ = 10. Although the uncertainty of selected samples is high, data points located within a limited
range in the feature space are selected in a biased manner.


